Kalman Filter
Tracking a stochastic process with noisy observation
Generative model
Dynamics: $x_{n}=x_{n-1}+\eta_{n}$
$\eta_{n} \sim \mathcal{N}\left(0, \sigma_{\eta}{ }^{2}\right)$
Gaussian random walk
Observation: $y_{n}=x_{n}+\varepsilon_{n}$ $\varepsilon_{n} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}{ }^{2}\right)$
Gaussian noise
Independence: $\perp\left\{\eta_{n}, \varepsilon_{n} \mid n \in \mathbb{N}\right\}$
Causal graphical model
Conjugate prior
Gaussian likelihood, parameterized by the mean: $y_{n} \sim \mathcal{N}\left(x_{n}, \sigma_{\varepsilon}^{2}\right)$
Gaussian prior, parameterized by mean and variance
$x_{n} \sim \mathcal{N}(a, b)$
Posterior

$$
\begin{aligned}
& p\left(x_{n} \mid y_{n}\right) \propto e^{-\frac{1}{2 b}\left(x_{n}-a\right)^{2}} \cdot e^{-\frac{1}{2 \sigma_{\varepsilon}^{2}}\left(x_{n}-y_{n}\right)^{2}} \\
& \propto e^{-\left[\left(\frac{1}{2 b}+\frac{1}{2 \sigma_{\varepsilon}^{2}}\right) x_{n}^{2}-2\left(\frac{1}{2 b} a+\frac{1}{2 \sigma_{\varepsilon}^{2}} y_{n}\right) x_{n}\right]} \\
& \propto e^{-\left(\frac{1}{2 b}+\frac{1}{2 \sigma_{\varepsilon}^{2}}\right)\left(x_{n}-\frac{\frac{1}{b} a+\frac{1}{\sigma_{\varepsilon}^{2}} y_{n}}{\frac{1}{b}+\frac{1}{\sigma_{\varepsilon}^{2}}}\right)^{2}}
\end{aligned}
$$

Precision-weighted averaging
$x_{n} \left\lvert\, y_{n} \sim \mathcal{N}\left(\frac{\frac{1}{b} a+\frac{1}{\sigma_{\varepsilon}^{2}} y_{n}}{\frac{1}{b}+\frac{1}{\sigma_{\varepsilon}^{2}}}, \frac{1}{\frac{1}{b}+\frac{1}{\sigma_{\varepsilon}^{2}}}\right)\right.$
Iterative prior
$x_{n} \mid y_{n} \sim \mathcal{N}(c, d)$
$x_{n+1} \mid y_{n}=x_{n}+\eta_{n} \sim \mathcal{N}\left(c, d+\sigma_{\eta}{ }^{2}\right)$
Convolution: $p(\alpha+\beta=X)=\int p(\alpha=Z) p(\beta=X-Z) \mathrm{d} Z$
Update rules
$x_{n} \mid \mathbf{y}_{n-1} \sim \mathcal{N}\left(\mu_{n}, s_{n}{ }^{2}\right)$
$\mu_{n+1}=\frac{\frac{1}{s_{n}^{2}} \mu_{n}+\frac{1}{\sigma_{\varepsilon}^{2}} y_{n}}{\frac{1}{s_{n}^{2}}+\frac{1}{\sigma_{\varepsilon}^{2}}}=\frac{\sigma_{\varepsilon}^{2} \mu_{n}+s_{n}^{2} y_{n}}{\sigma_{\varepsilon}^{2}+s_{n}^{2}}$
$s_{n+1}^{2}=\frac{1}{\frac{1}{s_{n}^{2}+\frac{1}{\sigma_{\varepsilon}^{2}}}+\sigma_{\eta}^{2}=\frac{\sigma_{\varepsilon}^{2} s_{n}^{2}}{\sigma_{\varepsilon}^{2}+s_{n}^{2}}+\sigma_{\eta}^{2},{ }^{2},{ }^{2}}$

Graphical models

Bayes nets, acyclic directed/causal graphical models
Nodes for variables, arrows for dependencies
Markov property
each variable x_{i} depends directly only on its immediate parents $\operatorname{Pa}\left(x_{i}\right)$
conditionally independent of all other variables
Joint distribution determined by conditional distributions

$$
\mathrm{p}(\mathbf{x})=\prod_{i} \mathrm{p}\left(x_{i}| |_{\mathrm{Pa}(i)}\right)
$$

Inference in complex models
Posterior over unobserved variables given observed variables
Prior and likelihood generally easy
e.g., conditional probabilities in graphical models

Normalization term (marginal probability of evidence) often intractable
Or marginalizing out intermediate variables
MCMC - Markov chain Monte Carlo

Design a Markov chain with stationary distribution matching desired posterior
Simulate it and use trajectory as samples

Markov chains and stationary distributions
Transition matrix: $T_{i j}=\operatorname{Pr}\left[s_{t+1}=S_{i} \mid s_{t}=S_{j}\right]$
Stationary distribution p :
$T p=p$
$\Sigma_{j} T_{j i} p_{j}=p_{i}$
Eigenvector with eigenvalue 1 (unique if T ergodic)
Example
$T=[.6$. 1 . $1 ; ~ .3$. 8 0; . 1 . 1 .9]
$p=[.2 ; .3 ; .5]$
Gibbs sampling
Version of MCMC
Yields joint distribution $\mathrm{p}(\mathbf{x})=\mathrm{p}\left(x_{1}, \ldots, x_{n}\right)$
Possibly conditioned on some observables: $\mathrm{p}\left(\mathbf{x}_{\text {unobserved }} \mid \mathbf{x}_{\text {observed }}\right)$
Cycle repeatedly through unknown variables (i)
Sample $x_{i} \sim \mathrm{p}\left(x_{i} \mid \mathbf{x}_{-i}\right)$, where $\mathbf{x}_{-i}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$
Doesn't matter which variables are observed or unobserved; all are held fixed except x_{i}
Bayes net: $\mathrm{p}\left(x_{i} \mid \mathbf{x}_{-i}\right)=\mathrm{p}\left(x_{i} \mid \mathbf{x}_{\mathrm{An}(i)}, \mathbf{x}_{\mathrm{Pa}(i)}, \mathbf{x}_{\mathrm{Ch}(i)}, \mathbf{x}_{\mathrm{De}(i)}\right) \quad$ [Ancestors, Parents, Children, Descendants]

$$
\begin{aligned}
& \propto \mathrm{p}\left(x_{i} \mid \mathbf{x}_{\mathrm{An}(i)}, \mathbf{x}_{\mathrm{Pa}(i)}\right) \cdot \mathrm{p}\left(\mathbf{x}_{\mathrm{Ch}(i)}, \mathbf{x}_{\mathrm{De}(i)} \mid x_{i}, \mathbf{x}_{\mathrm{An}(i)}, \mathbf{x}_{\mathrm{Pa}(i)}\right) \\
& =\mathrm{p}\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right) \cdot \mathrm{p}\left(\mathbf{x}_{\mathrm{Ch}(i)}, \mathbf{x}_{\mathrm{De}(i)} \mid x_{i}\right) \\
& =\mathrm{p}\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right) \cdot \prod_{j \in \mathrm{Ch}(i) \cup \operatorname{De}(i)} \mathrm{p}\left(x_{j} \mid \mathbf{x}_{\mathrm{Pa}(j)}\right) \\
& \propto \mathrm{p}\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right) \cdot \prod_{j \in \mathrm{Ch}(i)} \mathrm{p}\left(x_{j} \mid \mathbf{x}_{\mathrm{Pa}(j)}\right)
\end{aligned}
$$

Stationary distribution is $\mathrm{p}\left(x_{1}, \ldots, x_{n}\right)$
Preserved under each update step

Exercises

1. Compare the Kalman filter to simple RL (with no cue). Look at their updating rules and explain how they relate. Extra challenge: building on this connection, try to derive a Bayesian version of Rescorla-Wagner (hint - assume the weights follow Gaussian random walks).
2. Generate data from a Kalman filter, meaning the sequence of mean predictions across trials, for some interesting sequence of observations. Fit the Kalman and RL models to the data and compute AIC for each model. If you want more, create data from an RL model on the same observation sequence, and then fit Kalman and RL models to these data and compute AICs.
3. Prove that $\mathrm{p}\left(\mathbf{x}_{\text {unobserved }} \mid \mathbf{x}_{\text {observed }}\right)$ is the stationary distribution for Gibbs sampling. That is, let \mathbf{z} represent the sample at any step in the Markov chain, and treat \mathbf{z} as a random variable with distribution matching $\mathrm{p}\left(\mathbf{x}_{\text {unobserved }} \mid \mathbf{x}_{\text {observed }}\right)$. Then define \mathbf{z}^{\prime} as the next sample, where \mathbf{z}_{i}^{\prime} is drawn from $\mathrm{p}\left(x_{i} \mid \mathbf{x}_{-i}=\mathbf{z}_{-i}\right)$ for some unobserved variable x_{i}, and all other components of \mathbf{z}^{\prime} are unchanged (i.e., $\mathbf{z}_{j}^{\prime}=\mathbf{z}_{j}$ for $\left.j \neq i\right)$. Show that the distribution of \mathbf{z}^{\prime} also matches $\mathrm{p}\left(\mathbf{x}_{\text {unobserved }} \mid \mathbf{x}_{\text {observed }}\right)$.
[Hint - let \mathbf{y} stand for any possible value of $\mathbf{x}_{\text {unobserved. You know }} \mathrm{p}(\mathbf{z}=\mathbf{y})=\mathrm{p}\left(\mathbf{x}_{\text {unobserved }}=\mathbf{y} \mid \mathbf{x}_{\text {observed }}\right)$ for any \mathbf{y}. Using this fact, show that the same statement holds about $\mathrm{p}\left(\mathbf{z}^{\prime}=\mathbf{y}\right)$.]
