
Math Modeling, Week 4 
Kalman Filter 
Tracking a stochastic process with noisy observation 
Generative model 
 Dynamics: xn = xn-1 + hn 

  hn ~ 𝒩(0,sh2) 
  Gaussian random walk 
 Observation: yn = xn + en 
  en ~ 𝒩(0,se2) 
  Gaussian noise 
 Independence:  ^{hn,en|nÎℕ} 
 Causal graphical model 
Conjugate prior 
 Gaussian likelihood, parameterized by the mean: yn ~ 𝒩(xn, se2) 
 Gaussian prior, parameterized by mean and variance 

xn ~ 𝒩(a,b) 
Posterior  

𝑝 𝑥%|𝑦% ∝ 𝑒*
+
,- ./*0 1

⋅ 𝑒
* +
,341

./*5/ 1

	

∝ 𝑒
* +

,-7
+
,341

./1*,
+
,-07

+
,341

5/ ./
	

∝ 𝑒
* +
,-7

+
,341

./*

+
-07

+
341
5/

+
-7

+
341

1

 
 Precision-weighted averaging 
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Iterative prior 
 xn|yn ~ 𝒩(c,d) 
 xn+1|yn = xn + hn ~ 𝒩(c, d+sh2) 
 Convolution: 𝑝 𝛼 + 𝛽 = 𝑋 = ∫ 𝑝 𝛼 = 𝑍 𝑝 𝛽 = 𝑋 − 𝑍 d𝑍 
Update rules 
 xn|yn-1 ~ 𝒩(µn, sn
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Graphical models 
Bayes nets, acyclic directed/causal graphical models 
Nodes for variables, arrows for dependencies 
Markov property 

each variable xi depends directly only on its immediate parents Pa(xi) 
conditionally independent of all other variables 

Joint distribution determined by conditional distributions 
 p(x) = ∏i p(xi|xPa(i)) 
 
Inference in complex models 
Posterior over unobserved variables given observed variables 
Prior and likelihood generally easy 
 e.g., conditional probabilities in graphical models 
Normalization term (marginal probability of evidence) often intractable 
 Or marginalizing out intermediate variables 
MCMC – Markov chain Monte Carlo 



 Design a Markov chain with stationary distribution matching desired posterior 
 Simulate it and use trajectory as samples 
 
Markov chains and stationary distributions 
Transition matrix: Tij = Pr[st+1 = Si | st = Sj] 
Stationary distribution p: 

Tp = p 
Sj Tjipj = pi  
Eigenvector with eigenvalue 1 (unique if T ergodic) 

Example 
 T = [.6 .1 .1; .3 .8 0; .1 .1 .9] 

p = [.2; .3; .5] 
 
Gibbs sampling 
Version of MCMC 
Yields joint distribution p(x) = p(x1,…,xn) 
 Possibly conditioned on some observables: p(xunobserved | xobserved) 
Cycle repeatedly through unknown variables (i) 
 Sample xi ~ p(xi | x-i), where x-i = (x1,…,xi-1,xi+1,…,xn) 
 Doesn’t matter which variables are observed or unobserved; all are held fixed except xi 
 Bayes net: p(xi | x-i) = p(xi | xAn(i), xPa(i), xCh(i), xDe(i))   [Ancestors, Parents, Children, Descendants] 
       µ p(xi | xAn(i), xPa(i)) × p(xCh(i), xDe(i) | xi, xAn(i), xPa(i)) 
       = p(xi | xPa(i)) × p(xCh(i), xDe(i) | xi) 
       = p(xi | xPa(i)) × ÕjÎCh(i)ÈDe(i) p(xj | xPa(j)) 
       µ p(xi | xPa(i)) × ÕjÎCh(i) p(xj | xPa(j)) 
Stationary distribution is p(x1,…,xn) 
 Preserved under each update step 
 
Exercises 

1. Compare the Kalman filter to simple RL (with no cue). Look at their updating rules and explain how they relate. Extra 
challenge: building on this connection, try to derive a Bayesian version of Rescorla-Wagner (hint – assume the weights 
follow Gaussian random walks). 

2. Generate data from a Kalman filter, meaning the sequence of mean predictions across trials, for some interesting 
sequence of observations. Fit the Kalman and RL models to the data and compute AIC for each model. If you want more, 
create data from an RL model on the same observation sequence, and then fit Kalman and RL models to these data and 
compute AICs. 

3. Prove that p(xunobserved|xobserved) is the stationary distribution for Gibbs sampling. That is, let z represent the sample at any 
step in the Markov chain, and treat z as a random variable with distribution matching p(xunobserved|xobserved). Then define z' 
as the next sample, where z'i is drawn from p(xi | x-i = z-i) for some unobserved variable xi, and all other components of z' 
are unchanged (i.e., z'j = zj for j ≠ i). Show that the distribution of z' also matches p(xunobserved|xobserved).  
[Hint – let y stand for any possible value of xunobserved. You know p(z=y) = p(xunobserved=y|xobserved) for any y. Using this fact, 
show that the same statement holds about p(z'=y).] 


